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ABSTRACT

In this article we develop a numerical lunar theory which
can be used to obtain the rectangular coordinates for a satellite
<~ moving in & highly inclined orbital plane. The arguments of the
theory are the linear functions of the true orbital longitude of .
the satellite and of the sun and thus they a..re of laplacian type.
We make use of Hansen's device to perform the integration and for
this purpose we introduce a fictitious satellite whose true
orbital longitude is considered.as a constant till the integration |
is completed. The perturbations in the ordbital plane are obtaingd
by means of a .W-function analogous to the W-function of the
:;cla.ssical Hansen theory, and the perturbations of the orbital
i«-plane carried by the vector -g the unit vector of the
f:.ctltious sa.temte relative to the mean ‘orbitak pla.ne. . We
show here that the combination of ideas of Lapla.ce, Ha.nsen a.nd.
Hill representsa convenient way to obtain a mmericau. lunax
. theory, &t the same time this work; also represents a further -
development and a simplification of Athe results given by the atg.thor

in his previous article.




NOTATIONS

- the position vector of the satellite,

T
-~ -t
r - the unit vector of r,

r' - the position vector of the sun,

L,

1

rs

u= >

HiH —

E-theiz:éanva.lueofu,

© - the unit vector of ¥,

-z,

u! au’! ==l'—
r' ?

/

—y,

U~ the unit vector of the fictitious satellite with respect to
the system of coordinates associated with the mean orbiial
plane. This plane is defincd here as a plane having the real
inclination i dbut whose longitude of the ascending node is

equal to va.

o -T",_ the unit. vector of the real satellite with respect to the

-t

4

' -mean  orbital plaze. - e - -
l/h the areal velocity of the satellite |
ho 'bhe mean va'l:ue of h |

e - the osculating eccentricity of the satellite

‘eo - the mean value of the eccentricity

% = the true orbital longitude of the pericenter of’ the satellite
(x) - the mean velue of X '

% - the periodic part of X

1-g1 - the mean motion of X ‘

PGP




gz - the mean motion of the argument of the latitude
gz - the mean motion of the ascending node
© -~ the longitude of the osculating ascending nodg ‘
G- - the distance of the departure point from the ascending 'noé,e
i - the osculating inclination of the orbital plane of the
satellite toward the orbital plane of the sun
N' - the perlodic periodic part in -3 (6 +¢& )
K' - the periodic part in +} (6 - & )
v - the true orbital longitude of the satellite
‘v, = gV -~ Tpo - the mean true anomaly of the satellite
" Vg = gz VHup - the mean argument of the latitude of the satellite
V3 = g3 V+8p - the mean longitude of the ascending node of the
' satellite
= the pseudo-time (the distrubed time)
83 = = t - the perturbations of time
w - the true orbital longitude of the fictitious satellite
Wy = g% - To - the mean true anomaly of the fictitious satellite
;wa = g WWy - the mean argument of the latitude of the
R fictiticus sa‘tel_b.te

m' - the mass of the sun.  The orbit of the sun is teken to be

- elliptic.
Q) - the disturbing function of the satellite. The mass of the
planet and the gravitational constant are chosen t0 be one.

The mean of the satellite is supposed to be negligible.




V- the @isturbing function in which the elliptic and the
non-elliptic v, are sepa.fa.ted by replacing in Q the
vector %by the vector T

W - the Hansen's function determining the perturbations in the

orbital pleane

.'§= W\w

“""




On the Numerical Theory of Satellites with Highly

Inclined Orbits

Peter Musen
Theoretical Division
National Aeronsutics and Space Administration
Greenbelt, Maryland

Introduction

In this article we develop a form of the differential equations
of the lunar theory which can be used to obtain the rectangular
coordinates for a satellite moving in a highly inclined orbital
plane. The integration of these equations is based on solving

a eertain linear partial differential equation by means of lteration.

The author suggested this idea in an earlier work (Musen and al. \9 6\ )

Thé argunents of the theory are the linear functions of the true
orbital longitude of the satellite -W and the true orbital
-'longi’cude‘\fef the sun and thus they are of I.apiacian type. The
;;firs‘c suggestion to use™V in the theory satellites belongs to
i@rown (\9’59). The use of the true orbital longitude speeds up
the convergence of the development of the disturbing function, in
coxirparison to the development in terms of the mean anomalies.

;, As in Hansen's theory, we split the perturbations of the
'sateilite into the perturbations in the- orbital plane and into
the perturbations of the orbital plane.

We decided to make use of Hansen's device to perform the
1 B s .




integration and for this purpose we introduced a fictitious

satellite whose true orbital longitude =~w 1is considez;ed as a
temporary constant, til}. {the integration is completed. After

the compleﬁon of integration, we apply the "bar opéra.tion" , replacing
Wby 'V , the true orbital longitude of the real satellite.

It is. of interest to note that the W~-function determining the
perturbations in the orbit plane is simpler in the theory of
Laplacian type than in the classical Hansen's theory.

Thus the combination of ideas of I.apla.Ce:, Hansen and Hill
represents a convenient way to obtain a numerical theory of the
satellite.

The exposition given here represents also a further develop-
ment and a simplification of the results given by the author in
his previous article {( \§ &\ ). In the classical Hansen theory

use is made of three auxiliary parameters.

T = 13&“..5_*\,3»“.}‘(

.
‘\ N Q =z 2 S’L‘(\.l}\./‘\, ~toSN '
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' 1
where )( is a purely periodic part in - ( &+ /o and K
is a purely periodic part in '\-(6-‘?)/3_.' For the sake of
the symmetry the author (\e,‘:t’) has suggested: the use of four

parameters

>\.\== S':n\\.i_:; 'tq.)( > )3__ @xﬁ__; S‘;\\.K’
* 1
As L A SUN WP

The implicit role of Hansen's, as well as the author's parameters
is only an auxiliary one. They only help to form the components
of the unit vector of the satellite with respect to the mean orbit
‘Plane. For this reason we discarded their use and resorted to the
determination of the unit vector directly.

The differential equation governing the perturbations of the
uﬁ;t vector is simple enough to Jjustify this modification and

thé’; total number of the differential equations is reduced for one.

The method given here is equally applicable to the planetary satellites .

disturbed by the sun or to the lunar orbiter disturbed by the Earth,
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as well as to the artificial satellites of the Earth whose

motion is disturbed by the presence of the zonal and the tesseral
barmonics. In the first two cases, the eccentricity must be small
or moderate and the last case does not include the case of ;:he

critical inclination.

Basic Differential Equations

We refer the motion of the satellite to a moving ideal System.
of coordinates with the oc and \} axes lying in the osculating
orbit pla;ne. The equations of motion cap be written in the fol-

lowing standard form:

S-S (.07 RS MU 3 @
dx* X R X
\
\ kS (¥ é‘_v_)_____ LN (2)
" [P \ A -y .
ax L sV




Putting

we can write

\

w= A v W e ces (v X)

The angle 'X, can be decomposed into the secularpa.rt

-~

(%) = (=g vV ~ T

(3)

(&)

)

{6)
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and into a purely periodic part ¢ . Thus

X';_- .(‘\—3\)?7 A TWox §
From (5) and (7) we have

v B e e (W - %)
where we put

"V"a 3\7-'7!20 |

The mean value of ..  can be defined as

(7)

(8)

(9)



— 2, 5 : .
W= Q‘\Q * Lo X‘\o "'-°$-v\ > (10)

'vhere L, is the constant of the eccentricity and ‘/&o is the
constant of the "area-integral”. Both elements, 2, and She ,
together with other elements, must be chosen In such a way that no
secular or mixed terms appear in the developmén‘b of the coordinates
into trigonometric series.

In order to set Hansen integration procedure it is convenient
in the ‘Laplace-Hansen type of lunar theory to define the basic

W-function by means of the equation:
W = %~K\*Q&°$(W\““?YX - —%\'—3 (\‘\' roo;w\'), - (11)
-3 _ ) : .

where wy 1s considered as a terporary constant.
Hansen “bar-operation"” consists in our case in the replacement
|
of wi by V, after the integration is completed. In forming

the differential equation for W, as well as in the process of

e o e e et Sy g

.
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i



integration, wi is invariable. This form of the W-function is
different from the classical one, but it léa.ds to & simpler dif-
ferential equation for its determination. The application of the

bar-operator to (11) gives:

'\Aat-\s _%:__ Q\:’:W (12)

Introducing the 'stretching factor" 1 + v by means of the eguation

= Cvav) - (127)

we obtain from (12):

. Do - -
\-\-vn(\'*%.&wy\. A (13)

The practical way of computing v by means of iteration is based

on the use of formula:

Vo= = Vav) LS

W (23%)
e W - ‘

¢l L«"f‘
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Making use of the equation (Brown, \®96& )

d 'Q\'Q't.os - - V2.0 sia -
:\'{h?., '(X ) 2 ~ $in (V=)

e Tk

A z‘i‘ (;\; +_§) <os (V=-p)

Ao 2R s (X-
To A% ‘“(_ &

' and putting

{5:.—:. V-V, &% W,

we ‘\‘obtain

A T 4 A oS e (V.
FAS v v T
SN &O <> L ( A N ’g\ )—ggs ('\T\_w\)
e he o

(14)

(15)

o gy T Aty et ey e e o -
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Cotbining the equation (15) with the stardard equations

_é___’_Q\.__.__. JA&,Q\ > L.

w— — —— &

At X, SN R

together, we deduce:

AW — R\L A o AV — "2\2' c | -
— \-(&i S 2\9‘; )'c S( A W\) \I%%\J!'eo SW\)‘?\%_\—;—.

\ ana ‘M 2\, ' - a M ) ’
A 28 i (View ) & 2 e (V-9 ) A sin (Hawy
| TP A ) : ) 13 )

o

Taking (12) into account, we obtain:,
\ -

AW V(A a3 LA W) ~es (V- W)
\Q&% e *&O/W) B

3> "y Y
- (E A\ N 2, sw\)} fo =

A 2 (V- wa) -\-%—- e(\-9,) -‘fi\-jcf Sin (P-wi)

Mo

Jo
0
y)
o

(16)

(17)
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Eliminating sin (%-w\ ) from the last egquation by means of the

relation

‘Q\o €.° S‘:—V\ W\

. 3w,

and taking

AW
~

“

into consideration, we have

'
\
A
5
\
\

. 9

o : N 4

-~ W,

In

= %\) (?f__\/_}/_ — % Qo S-w\ W‘)

where we put

(18)

(19)



)\{._._, — % S+ (V= W),

N: .&.\(&; % g Tosn w\i '\-{“—o W) "°§.('V"-w.)

The motion of the pericenter 1 - g; is obtained from the condition
that no term of the form A <e3W,  appears in the equation (19).
If the eccentricity ec is not very small, say, of the order

0.01-0.3, approximately, then the numerical values of all the elements
can be subsitituted from the outset.

. If the eccentricity is smaller than, approximately, 0.01, ‘then
;in order to avoid the numerical difficulty in the determination
of the motion of the perigee, it is recommended to keep the
first power of the eccentricity in the literal form. In other

words, every trigonometrical series T must be written in the form

T = As Jz.oA\v

where Ap is independent from eo and both series, Ao and Aj,

B T
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are the trigonometric series with purely numerical coefficients.

We write the product of two such series in the form

(A° * Qo A\) (‘Bo * Lo E\) = AOEQ*QO(A\EQ*AQB\*
| o AUD)

and, again, the numerical value of ep is substituted in the
parentheses. BSuch a simple device serves as a safeguard against
the "small divisor" in the determination of the motion of the
pericenter from equation (19). The unit vector ;ZQ can written

in the form

- s WV

T2 As(e). Ala). M) - |y (20)

A <og Tl - S X
Xl X * <ot O

>
N
[
i
0

0




- -

and
*rCa?, o - S oL <
A'b (¢ ) = 4 St S <ol ol o
' ° o *\
e -J‘

and we have

<os{ V-~ &)

Ar (o). A (A) - San (V-T)

]

we can set
i !

S = V3-.J\[.'\‘K‘

where Vo and vz are the linear arguments with respect to v,
Vi, = Gs. V > Do

Vi= Gy V>




and J{. and V\' are purely pericdic. The argument v, represents
the mean argument of the latitude and vs represents the mean
longitude of the ascending node. The coefficient gy is of order
of one and gz is of the order of perturbations.

Using the auxiliary parameters

i !
?\‘2 Sevu VA, <o N 5 P\3= <054, $iw K,,
o 2,

{ . d
A Siwn 7\4, = ‘COS-%— 4 ol \«)

= O ’
the unit vector ’. can be represented as (Musen, \S 6 ):

->a .
T = A3 ( V%‘) AR SLV\VL > (21)
L=
where the matrix /\ carries all the periodic effects in .

The elements 7\;} of the matrix /)\  are simple polynomials in

N

A, Az, Ms, e

; ‘ 2, 5, 2
'?\\\-:,*9\'\2'522_~>\3~\.A“>
>\_q~\ = %2 >\3 Ao — 2 AL Axs (22)

>\3\Q %-2,?\3?\\-\- ikl;\“)



A\L""‘ *:-A‘bkg"z‘}\\z-?.

2 o D W

Anym w2A A, = 2 Ay 2y

>\’5= -\-.L}\\Ab \'2).2_ A"ﬁ
Ay = = AT = A5 = AT w2

(24)

The author has established (Musen, \S &% ) the following set of

the differential equations for the variations of the ) - parameters:

L

d Ay =__ '3\.£ W\=9. ~9;) A;’ As. (25)

ax , a

| . . |
& 28 T (0« X3) B (A DA ) RO
= \_QA E e ( (WA S 3)1}\3

~ (22 2u- A 2) 1&1
. . "B yy |




- 17 -

R r Sk T IO N €O

" D
A‘kﬁ“:*—}i- (\‘C};“%’s)ﬂ(/\a | (27

ANa ( \~

— ey

Fa— 9

L) Aa=2y An) 2
*.___&‘;\-(?\\-\-?\ )’BA?)-\-»(?\_), a \ =

.-}-.\ :-"o‘ (28)
3 000 = ax
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From equations (22) - (28) we deduce:

AAn Ca A ', av \
v = (\=90) Aa 9y Ay =t I&A?\\s

(30) .

(31)

- (32)

(33) -
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BA% (N2 9) Ay Y 4k DA, ()

— /
where we put
. \"‘\~-
\":‘ ~
L
\‘ " o
\ " \‘
-
\' B
I\‘ :

N _\_ABIQ&I A Aa o, A, o o - 37)



The simplicity of eguations (30)-(35), as well as equation (21),

- 20 -

show that we can discard the use of A - parameters and o intro-

duce the unit vector

-

5 = )\'5\ ’QOSW.L-\»- >\—5_L S v W,

2 5y 2,
Y\\ *V‘_L%V‘s'a\

(38)

(39)

(40)

(41)

T N I
R I A B
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instead. We shall consider W, constant during the Tormation of the
—_—

differential equation for \' and during the integration. After

the integration is completed, we apply the bar-operation to
—

——

end replace wp with vp. .The vector | is the unit vector of
the satellite relative to the mean orbital plane.

Thus

Vim= Aamaa WV, x Ay 83wV,

\

Y‘l = Ay, <oy Vi = Ass SIwV

(387)

(39')

(40°)

R L R



\"3 = A Ty VWV, o+ Any WV,

and equaticn (21) takes a concise form

% = Ay(wvy). T

In performing iteration we have to distinguish between vy.
in the development of perturbations and the "elliptic" v, in the
-_—
vector © .
" The derivatives of the disturbing function are formed with

respect to the "elliptic" vy. -For this reason it is convenient to

(41%)

(42)
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1 separate the elliptic and the non-elliptic vy in the disturbing
. ——
= —_>

function by tewporarily replacing the vector “  with © .

The disturbirg function so modified will be designated by

A\\ . Taking (39)-(41) into account, we obitain

A -__'>\ "bT\"_\_k'E_\T__)\ }*‘\—\ w A '\o_r
‘2'( A, B}Aﬁ_ “'3)\%-? ' }A“}

R RS Ny
—_— —
= -—-—T‘)\ ‘ft \\ San W y
L (an 2N 2N AW o, PN
'2( 2 A\ 3 As. \’.D)\g ’3)\4)

—

i -
=& X V-—g\\ o\ W

A == C sinvs
S ——

A D o o Coeov vy
20 v

where wWe put

|
f

o)
”
C‘,}.
|
3

C = ’3\\ Avn

\ 72
A0 >

o)
jo?
o/
o




ol - e (\= %’3-) Q——"“v - 1$v.\*&“j C )\ s:w.(w_,_.'v;._) (4%) -
” s '

NN SN R 3,,)?;_22.,

AV W,
or, in the vectorial form:
LIS A a.-'h?‘x&
AN DWW,y _

The components Ays, A

— - 2
A

a,

g

2 2
WA A Cogseoavy) 09
RNe ™

2 — N -
A RC Sinlw,-Va) (46)
= \‘.‘. E : .

Ayo Of the vector R are computed
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using the formla

N=(v=x2¥)

” H,=e

1 d

for the lunar case we obtain, taking (42) into account:

>0 - ° : =<
*to\\\-.—_- wx . n’ a\:tos‘\z.,’&-h.\?.,o}- A'bﬁvs\- )

Thus, in performing the trgnsitibn from L to \\ we must

substitute the following expression for cos H:

AN <os(Vya Vi) = Vg 3wV f.V‘) o

From

o ‘ A e
Qu - X T, (= W) "’-L"-?- Ty (Ra W)
'- - , o
. D e -
o X _?“ (1.5 \-\) ORI
» ¥ !

(¥7)



.

\ = A

- 3 & A |
:.2‘_";‘ Cras)™ (%5_\) (%_:) \_(*%?"" -\.-_}V:~-}_)
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we obtain:

-~ 2 (- ©0)) ~»(2Vy-av,) - % O, Oy $im(avy~avi))

N 2-,,

ol(\-vv) (;\:TI)( ) ‘(\? T\\ *\;V“L—_VSMGQV;)

d :
N % . 2
~ (-% A ~\{_.Y‘_,_«-T\‘_,_)S\-.(v3-v.)
‘ . . ,:
* &*%\‘\3..%?\ v,_)"°‘(3.va-3v~)
~ (=A% TP, + =T T ) Siwm (D V=3 VL)
b - :
3
NP L= Caen) ..wsv NEUT 3 ol
Ly a, o
% Mo V) AT UL M ot a D
P a a %)
\ 2 . 2,
v (~aF - "t‘i (MY -}{\: v« Y ) mes(av,— 2 V)
: ‘- I~ - ‘o
(=25 T2 T, = 3% v, T, * 33 T T,) WlaV-av)
> Y &_

. (-LS.'. Y Y. -* 3\5_ W v;) Saw (4 V3_4V‘)1\....,
. e I . | |

i
i

s
s
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whexe
k)‘ - '\"“-' — "' .
( 2\" ?

A is the analogue of the parameter ww, of Delaunay's theory
and is the parallactic factor of our ltheory. As in (43)-(45)

equation (19) becomes:

 Equations (43)-(45) and (19') can be simplified in the case
of the artificial satellite, providing only zonal harmonics are

considered. We have

TY: Q{_.,_\f (\—'b“;‘)-& 2&3‘\~“("° \‘.5-.‘:“:)

: | . |
ARewT (D= 30 Ty +3T T ) A

(19%)
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a by *(\-%&)’b‘\* 9, Ta
AV Qw-’.

a
o VO S

o
' R ©
SW N 2% oW e AN 2N

AT AW,



We start iteration with

v‘-:. oy W, > v.,_ = el Ao Biwm W, > ~v3-= Siw g Siww,

and repeat it till we reach the final values. The perturbed

coordinates are the trigonometric series in four arguments:

V., Vo, Va, Vi

In the classical Laplacian theory the angle v4 is eliminated in
favor of the angle mv-c,, where ¢4 is a constant. We can avoid
this elimination, as well as the substitution of trigonometric

: series into the arguments, if we base the solution on integration

6
m & partial differential equation instead of perform.ng the

quadratures.
AN
. We have: :
O 7 A\
AV«,R . \ = ) VN~ >
I\ A .
or -~

(48)
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Designating the constant part in the right side of the last

equation by g4’we have 3

. )

A _ - "2 .q 2. 2 K o
el (et <3"-rw_,_ 3"@\«, H .

Ve DV

where we put ;

RIS N Rl £ h |
K-::(R.o)j &'o(\ ) (QIL‘:> 34 ?

and K is a purely periodic series.

Thus, we reduce the problem to integration of the partial

ﬁiffefeﬁtial equations:

(49)



L A e reas bebe i i a

\.

-3 -

-y,
~ T‘ ~ © '
%‘ ’Z‘V\ 3.&. ' '\' 3‘5 ~. >~ %a e (46')
-
== (\—3:_){3_: T A 33 ?X%
2wy
2 - -
A A R LC sim (W)= K 2%,
9..."; w2 V.,

and the right sides of these equations must not contain constant terms.

From (49) it can be seen easily that

K= O(Q-)\)

and it is a small quantity. The terms ,

K 2W | KX

KA P V.,

numerica.]_]y are at least of the fourth order in ) . Consequently,
the solution of the partial differential egquetions (19") and (46')

- by means of iteration represents a fast convergent process.

. -
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Some simplifications are possible in the case of an artificial
satellite. If we include the effects of the tesseral harmonics,
then the argument vy is the sidereal time on the zero-meridian.

Designating the angulaxr velocity of rotation of the Earth by n', we
have

dva_ w0 X (R0
a:rr"‘;:g &,(u)

Let g4 be the constant part in the right side of the last equation
and put:

Sy (B)-

I
iWe have:
.\‘ |
a " 2 ~ : ) K 2 |
Qv 3‘ AV, ‘S.a N (%’5 K ‘}« v v, >

because the arguments vz and vy4 appear in the form of the difference



Vg -~ V40
Evidently

K= 0 (% =)

If we conéider the case of geodetic satellites with small ec-
centricities, then the quantity w. e, / &‘5 is small enough

k-
to justify the use of iteration. For example, for the satellite

with

a=a \.27 Vg Q == 0.0\

1
'

the factor w' Re /33 is of the order 10 °.
(-]

If only the zonal harmonics are considered, then

and equations (15") and {456') beco

. — 1 3 e
2 g AW L N2W M Lo o
Vv, RV, e RN wt e

AW,

+(Vv=19,) (’3__\/_\{ - _2;::, |e.. ““w.‘)‘:"
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1 —
‘3‘?—2 > g "3__.-‘?:(\~3_'_) AT .,,.3' ‘%’JZ’
@V, * av, TN k¢

I —~
| v 27 2e N AL sim (Wy =)
ERve |

For the time being the authoris preference is on the side of

i

numerical theories. Taking into account the speed and accuracy

with which modern machines perform the operations, it is evident

that the position of purely numerical theories is very satisfac-

tory. However, the way to solve equations ('19') and (46') by

an analytical method is not closed either. We can follow the

way suggested by Polncare (\\9%)  and represent the frequencies
—_

81, 82, 83 Z¢ and W and \* as power series Then

we develop the operator

0

%\_(_3__-\.%*_:‘;_\. 33__..\.34-’2.

Q"V\ MV, AV, AV
into a power series in The coefficients in this series

are also operators. Then we are &able

~and (46') into equations integrable by quadratures.

[y —
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Constants of Integration

Determining intégration constants in this theory is simpler
than in the author's previous theoxy (\o)s3).

In the lunar case, the series for Aw, Aaax, Ay,  are
the cosine series and, consequently, they contain the additive
constant of integration. The series for A\_\, Asis Ay
are the sine series and they do not contain any such constants.
The same conclusions are valid also for artificial satellites.

We conclude that the form of the additive coz':xsta.nt of integration

in Y‘\ is

4

[
A xr <)) <oy Wy -

in it is
T‘& it

(<os Ao N &l,_) S W_,_

and in VY, it is

(Sim A ft,s) i w W‘,_

e

t

» We shall determine cp and ¢z in such a way that cos ip sin vy
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will be the only term in (‘3. which is of the zero order and
SAnmag 34w YV, will be the only term of zé?:o order in V3 .

The series for \% , will be the cosine s;aries in vy, Vo, V3, Vg

and T, , T will be the sine series in these ‘arguments.

We conclude, that the term in
*(\=9g 3’3 Yvo& C&.o

independent from vy, vy, Vs, v¢ must contain sin wp as a factor.

In a similar way, the terms in

~» s
* (\ %.&.) vy - a’&

and in

1a) W,

which are independent from vi; V2, Va3, V4 must have cos wp as a
factor. In order to avoid the secular terms :Ln the components of
—\3 | we must remove the terms containing the a.i-gument Wo alone
from the derivatives of -‘? . ILet \( be the coefficient of

v

sin wy in
i

LY 2,
_&\_. _SL_°. C >\\3 Siwm (W, =V,

N X
o w

Y R L R en

P T P
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" Ko be the coefficient of cos wz in

a -
;‘:: . 2-1 C >\.a.3 33w (W, - VL)

and Kz be the coefficient of cos wyp in

‘L .
g AP C A SAawm {(w )
T — 3 C e = Vald-
 RoulRVE
We have to put

e V=) Cvae <)) -\-33(«=°;-'~°-\-<,',_) + K=o

(- Fa) (mos i, + ‘5.),"‘33 U\ <\) ~ K.:.“ ©

and because A\ is of the order of perturbation, K; is of

3

(50)

(51)

(52)

i
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higher order relative to K 3 and K‘b .

We determine l-g 1a.nd gs from equation (50) a.nd. (51).
Equation (52) serves as check.

The constants cj, ¢4, cs in (50)-(52) can be taken from the
previous spproximation. It remains for us to discuss the deter-
mination of cy. Let wl, Lo , LT, ve the
values obtained by the formal process of integration, without

adding the constants. Then:

V\:-_ ’\\*'C'\) "O\WL '\-tv\l,

vl n.cfﬁo\ ’\\'o e 'QL) %‘;'V\.W_L*‘_v):& s

y

Vi = (3w de '*'f‘.'b) Sam W, ‘.\‘-,X .

P

WL, BT

Rt B S N L

s proh ma e e n e & m rermt i e

i.etl Y__Vﬂo » \ '\‘.\,-‘l '{_?3'\50 be the values of Y.T:X‘t?a..&,.\..'v;x '

L X J
obtained for wz = 0.

\ P



—
' is a unit vector and it must be:

2, 2
Q&< )™+ =onrt, park i {[\1’; ARV YR SR VA 1N ".\A =\

¢
From this last equation l+c; is obtained without any ambiguity.
Determining constants in the given theory is simpler and easier
than in the theory based on use of A, )\,_‘ D VU
7

Equations (11) can be written in the standard form

—

W= T -\,'\{-:osw‘-\-Y%-'shW\ > : . (1)

where in our case

°

> (53)

S S
. %

o]

\(‘_ = L _%"_ tO\#—- 8.‘..9.) v A‘ - (54)

‘.Ygfe%%%w§>-~l | (55)
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'If i 11 {\(3 Y_Y'& and Y.Wl are the values

obtained by formal integration, then
——— —— “
= = ‘. :..l * <o,

N TN ~et,

Y - Lwl ,
Y.W]= KEK'\-\_'\(‘X—;%W; ~ LE) sivw,

W= TW ) * <t <! o,

. ] u
where <g and €, are the constants of integration.

'We have

Y.E-X = the part on_W]whicI!z does not contain w,
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U1 = {Uwl-T=20 L

)= ttwl-t=Y o

From (5}) we obtain:

o - - = N Tl A —3..
L= L T s
| (53')
S -
— _, R
o .
_'i_o. _— \—- T\i- -— '*‘——}i_ — & N (= ? Y v awe

A

.\

RN

Y
EN

0

where =~ s -~ ...can be taken from the previous approximation.
—— —— > .
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o
We determine <o in such a way that%:—i -\ does not contain

& constant term. Then -

M . — -3
CTo = - theeonstan‘btemin{"'z\-—‘;"%;*""},
c: is of the higher order compared to = . From (12)
we obtain
2, — ———
Mmoo e B e W (56)
or
2, —_— — 0
\A___Q,,o_'\a *\W-&-\-Q;‘%fc\asv\
= 2 : (57)
( o .
% -\ and W 1in the last equation can be taken from the
° .

] ‘
previous approximetion. We choose <€, in such a way that no term

of the form A cos vy is present excepting the term 24 <\ V..



Determination of Time

We introduce the "disturbed" time } by means of the equation

Introducing the eccentric anomaly & by means of the equation

- -2 -\ .

where

we can write (58) as a Kepler's equation of the form

&-Q°$§~\.&.-=X°"\-’\—\o%\%,

WMo = Qo

\‘Putting

we obtain from (3), (12') and (58)
3}
e L (veed) (R D R ]
A.V a %o
Making use of (53") we obtain |
’ 32; < 3
dmedh  (vemeh)  (Xe) Tav X =)
AV = *+
S(3 = e Twavd) ]



Conclusion

The lunar theory presented here is a numerical one, based on
the application of the process of iteration. The _experimenting'with
Hansen's lunar theory done at Goddard Space Flight Center by
M. Charnow and by the author confirms the possibility of using the
process of iteration io solve the problem. The nuinber of cycles‘
for the satellites of outer planets will be rather small, because
the final format of the computation accuracy for such satellites
does not exceed 10 ° in 1 + v and O.OOZLo in the angles.

The decision concerning the choice of terms in the development
is left to the machine and thus there is no danger that by accident
some influential terms will be omitted. We assume that the eccentricity

is small or moderate. Then validity of the theory depends upon the

"value of the parallactic factor and ﬁpon the presence of the resonance

geffe cts.
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